Solve 1+cosx=sin2x
(2n+1)π ∀ n∈N
Here, we will write sin2x=1−cos2x, because there is a 1+cosx on L.H.S. and it will be a common factor.
⇒1+cosx=1−cos2x
⇒1+cosx=(1−cosx)(1+cosx)
⇒1+cosx=0 or 1−cosx=1
⇒cosx=−1 or cosx=0
⇒x=π or x=π2
We know that the general solution forumla for the equation
cosx=cosα
is x=2nπ±α
⇒x=(2n±1)π
or x=(2n±1)π2