1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Trigonometric Identities
Solve: 1+tan...
Question
Solve:
(
1
+
tan
2
θ
)
(
1
+
sin
θ
)
(
1
−
sin
θ
)
Open in App
Solution
(
1
+
tan
2
θ
)
(
1
+
sin
θ
)
(
1
−
sin
θ
)
=
sec
2
θ
(
1
−
sin
2
θ
)
since
1
+
tan
2
θ
=
sec
2
θ
=
sec
2
θ
cos
2
θ
since
1
−
sin
2
θ
=
cos
2
θ
=
1
since
sec
θ
=
1
cos
θ
Suggest Corrections
0
Similar questions
Q.
(
1
+
tan
2
θ
)
(
1
−
sin
θ
)
(
1
+
sin
θ
)
=
Q.
Simplify
(
1
+
tan
2
θ
)
(
1
−
sin
θ
)
(
1
+
sin
θ
)
Q.
Prove that
(
1
+
tan
2
θ
)
(
1
+
sin
θ
)
(
1
−
sin
θ
)
=
1
Q.
Question 11
Simplify:
(
1
+
t
a
n
2
θ
)
(
1
−
s
i
n
θ
)
(
1
+
s
i
n
θ
)
Q.
Prove the following trigonometric identities.
(1 + tan
2
θ) (1 − sinθ) (1 + sinθ) = 1