Consider the given differential equation,
(1−y)xdydx+(1+x)y=0
(1−y)xdydx=−(1+x)y
(1−y)ydy=−(1+x)xdx
(1y−1)dy=−(1x+1)dx
Taking integration both sides with respect to x, we get
∫(1y−1)dy=−∫(1x+1)dx
logy−y=−logx−x+C
logy+logx+=x−y+C
logx.y=x−y+C
xy=ex−y+C
Hence this is the answer.