Solve:2cos2x+3sinx=0
We have
2 cos2x+3 sin x=0
⇒2(1−sin2x)+3 sin x=0
⇒2sin2x−3 sin x−2=0
⇒2 sin2x−4sin x+sin x−2=0
⇒2 sin x(sinx−2)+(sin x−2)=0
⇒(sin x−2)(2 sinx+1)=0
⇒(sin x−2)=0 or (2 sinx+1)=0
⇒sinx=2 or (2 sinx+1)=0
⇒2 sinx+1=0[∵ sinx=2 is not possible]
⇒ sinx=−12=−sin π6=sin (π+π6)=sin 7π6
⇒ sinx=sin 7π6
⇒x={nπ+(−1)n.7π6}, where n∈I.
Hence, the general solution is given by x={nπ+(−1)n.7π6}, where n∈I.