wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:2cos2x+3sinx=0

Open in App
Solution

We have

2 cos2x+3 sin x=0

2(1sin2x)+3 sin x=0

2sin2x3 sin x2=0

2 sin2x4sin x+sin x2=0

2 sin x(sinx2)+(sin x2)=0

(sin x2)(2 sinx+1)=0

(sin x2)=0 or (2 sinx+1)=0

sinx=2 or (2 sinx+1)=0

2 sinx+1=0[ sinx=2 is not possible]

sinx=12=sin π6=sin (π+π6)=sin 7π6

sinx=sin 7π6

x={nπ+(1)n.7π6}, where nI.

Hence, the general solution is given by x={nπ+(1)n.7π6}, where nI.


flag
Suggest Corrections
thumbs-up
43
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon