Solve:
2log10x=1+log10(x+1110)
We have,
2log10x=1+log10(x+1110)
We know that,
log1010=1
So,
2log10x=log1010+log10(x+1110)
⇒log10x2=log1010×(x+1110)
On comparing that,
x2=10×(x+1110)
x210=10x+1110
Now,
x2=10x+11
⇒x2−10x−11=0
⇒x2−(11−1)x−11=0
⇒x2−11x+x−11=0
⇒x(x−11)+1(x−11)=0
⇒(x−11)(x+1)=0
⇒x−11=0,x+1=0
⇒x=−1,11
Hence, this is the
answer.