wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve
2sin2β+4cos(α+β)sinαsinβ+cos2(α+β)=

Open in App
Solution

2sin2β+4cos(α+β)sinαsinβ+cos2(α+β)
(cos2θ=2cos2θ1)
so,
2sin2β+4cos(α+β)sinαsinβ+2cos2(α+β)1
2sin2β1+cos(α+β)[4sinαsinβ+2cos(α+β)]
2sin2β1+cos(α+β)[4sinαsinβ+2cosαcosβ2sinαsinβ]
[cos(A+B)=cosAcosBsinAsinB]
2sin2β1+cos(α+β)[2cosαcosβ+2sinαsinβ]
{cos(AB)=cosAcosB+sinAsinB}
2sin2β1+cos(α+β)×2×cos(αβ)
2sin2β1+2cos(α+β)cos(αβ)
{cos2Asin2B=cos(A+B)cos(AB)}
2sin2β1+2cos2α2sin2β
2cos2α1
cos2α

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Substitution Method to Remove Indeterminate Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon