1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Sum of Trigonometric Ratios in Terms of Their Product
Solve: 2 si...
Question
Solve:
2
sin
2
θ
−
5
sin
θ
+
2
>
0
,
ϵ
[
0
,
2
π
]
Open in App
Solution
2
sin
2
θ
−
5
sin
θ
+
2
>
0
0
ϵ
[
0
,
2
π
]
2
sin
2
θ
−
4
sin
θ
−
sin
θ
+
2
>
0
2
sin
θ
(
sin
θ
−
2
)
−
1
(
sin
θ
−
2
)
>
0
(
sin
θ
−
2
)
(
2
sin
θ
−
1
)
>
0
(
sin
θ
−
2
)
is always negative
(
2
sin
θ
−
1
)
<
0
sin
θ
<
1
2
l
n
[
0
,
2
π
]
0
ϵ
[
0
,
π
6
)
∪
(
5
π
6
,
2
π
]
Suggest Corrections
0
Similar questions
Q.
The values of
θ
in
(
0
,
2
π
)
for which
2
sin
2
θ
−
5
sin
θ
+
2
>
0
is
Q.
The value of
θ
∈
(
0
,
2
π
)
for which the equation
2
s
i
n
2
θ
−
5
s
i
n
θ
+
2
>
0
is
Q.
The set of values of
θ
satisfying the inequation
2
s
i
n
2
θ
−
5
s
i
n
θ
+
2
>
0
, where 0<
θ
<2
π
,is