The correct options are
A x=2nπ+π2 where
n∈Z C x=mπ±π4,
mϵZ, where
m,∈ZWe have
2sin2x+sin22x=22sin2x+(2sinxcosx)2=2
2sin2xcos2x+sin2x=1
2sin2xcos2x−(1−sin2x)=0
2sin2xcos2x−cos2x=0
cos2x(2sin2x−1)=0
cos2x=0 or sin2x=12
⇒ x=2nπ+π2
sin2x=sin2π4
=2nπ+π2 or x=mπ±π4, m∈Z, where m,n∈Z