25+23+19+16+...+x=115
Its an A.P., where
a=25d=22−25=(−3),Sn=115
in order to find x, we need to find the number of terms i.e. n
Sn=n2(2a+(n−1)d)
115=n2(2×25+(n−1)(−3))
115=n2(50+n(−3)−(−3))
115=n2(50−3n+3)
115=n2(53−3n)
115×2=n(53−3n)
230=53n−3n2
230−53n+3n2=0
Here we have a quadratic equation i.e.
3n2−53n+230=0
to find the value of n, we need to find the roots of the equation by the formula,
n=−b±√b2−4ac2a
where a=3,b=−53andc=230
n=−(−53)±√(−53)2−4×3×2302×3
n=53±√2809−27606
n=53±76
n=53+76 or n=53−76
n=606 or n=466
n=10 or n=7.66
Since the number of terms i.e. n cannot be a decimal number
Therefore n=10
for finding the last term,
x=a+(n−1)d
x=25+(10−1)(−3)
x=25+9(−3)
x=25−27
x=−2
So, the last term of the series i.e. x is −2