3⋅sin2θcos2θ−2sinθ=0,cosθ≠0.
Multiplying throughout by cos2θ and then changing it into sin2θ. we get
3sin2θ−2sinθ(1−sin2θ)=0
sinθ(3sinθ−2+2sin2θ)=0
sinθ(2sin2θ+4sinθ−sinθ−2)=0
sinθ(sinθ+2)(2sinθ−1)=0
∴sinθ=0, ∴θ=nπ
sinθ=1/2=sin(π/6),
∴θ=nπ+(−1)nπ/6
sinθ=−2(rejected as sinθ cannot be greater than one numerically).