Solve:3t−24−2t+33=23−t
Given: 3t−24−2t+33=23−tLCM of 3,4 is 3×4=12⇒3(3t−2)12−4(2t+3)12=2−3t3⇒9t−612−8t+1212=2−3t3⇒9t−6−8t−1212=2−3t3⇒t−18=12(2−3t)3⇒t−18=4(2−3t)⇒t−18=8−12t⇒12t+t=8+18⇒13t=26∴t=2
Evaluate: 3t−24−2t+33=23−t