Solve: 4[1–sin2θ][1+tan2θ]
4
1
2
0
We know that (1−sin2θ=cos2θ and 1+tan2θ=sec2θ) 4[1−sin2θ][1+tan2θ]=4 cos2θ×sec2θ=4
4 [1 – sin2θ] [1 + tan2θ] = ___.