The correct option is
A θ=nπ+(−1)nα,
θ=nπ+(−1)nβWe have
4cosθ−3secθ=tanθ4cosθ−3cosθ=sinθcosθ
4cos2θ−3=sinθ
4(1−sin2θ)−3=sinθ
4sin2θ+sinθ−1=0
sinθ=−1±√1+168
=−1±√178
=−1+√178 or =−1−√178
Now, sinθ=−1+√178. Thus,
sinθ=sinα, where sinα=−1+√178
⇒ θ=nπ+(−1)nα, where
sinα=−1+√178 and nϵZ
and sinθ=−1−√178
⇒ sinθ=sinβ, where sinβ=−1−√178
⇒ θ=nπ+(−1)nβ, where
sinβ=−1−√178