wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve 4sinθ sin2θ sin4θ=sin3θ.

Open in App
Solution

4sinθsin2θsin4θ=sin3θ

4sinθsin(3θθ)sin(3θ+θ)=sin3θ

4[sinθ(sin23θsin2θ)]=3sinθ4sin3θ

4sinθsin23θ=3sinθ

sinθ(4sin23θ3)=0

sinθ=0 or 4sin23θ3=0

sinθ=0 or sin23θ=34

Nowsinθ=0x=nπ,nϵZ

And, sin23θ=34

sin23θ=(32)2

sin23θ=sin2π3

3θ=mπ±π3,mϵZ

x=mπ3±π9,mϵZ

Hence x=nπ or x=mπ3±π9 where
m,nϵZ

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon