Consider the given equation.
4sinxsin2xsin4x=sin3x
2(2sin2xsinx)sin4x=sin3x
We know that
2sinAsinB=cos(A−B)−cos(A+B)
Therefore,
2[cos(2x−x)−cos(2x+x)]sin4x=sin3x
2[cosx−cos3x]sin4x=sin3x
2sin4xcosx−2sin4xcos3x=sin3x
We know that
2sinAcosB=sin(A+B)+sin(A−B)
Therefore,
sin(4x+x)+sin(4x−x)−[sin(4x+3x)+sin(4x−3x)]=sin3x
sin(5x)+sin(3x)−[sin(7x)+sin(x)]=sin3x
sin(5x)−sin(7x)=sin(x)
We know that
sinC−sinD=2cos(C+D2)sin(C−D2)
Therefore,
2cos(5x+7x2)sin(5x−7x2)=sinx
2cos(12x2)sin(−2x2)=sinx
2cos(6x)sin(−x)=sinx
−2cos(6x)sin(x)=sinx
cos6x=−12
6x=2nπ±2π3
x=nπ3±π9
Hence, the value is nπ3±π9.