Solve: 5(x+1)+5(2−x)=126.
Given 5(x+1)+5(2−x)=126
Applying the rule of am+n=am×an
⇒5x×51+52×5−x=126
Let 5x=y⇒5−x=y−1.
So, above expression can be written as 5y+25y=126
⇒5y2+25y=126
⇒5y2+25=126y
⇒5y2−126y+25=0
⇒5y2−y−125y+25=0
⇒y(5y−1)−25(5y−1)=0
⇒(5y−1)(y−25)=0
⇒5y−1=0 and y−25=0
∴y=15 and y=25
⇒5x=5−1 and 5x=52 (since, y=5x)
∴x=−1 and 2.