wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:
5cos2θ+2cos2θ2+1=0,π<θ<π

Open in App
Solution

5cos2θ+2cos2θ2+1=0
5cos2θ+2cos2θ21+1+1=0 by adding 1 and 1
5cos2θ+cosθ+2=0
5(2cos2θ1)+cosθ+2=0 since cos2θ=2cos2θ1
10cos2θ5+cosθ+2=0
10cos2θ+cosθ3=0
10cos2θ5cosθ+6cosθ3=0
5cosθ(2cosθ1)+3(2cosθ1)=0
(2cosθ1)(5cosθ+3)=0
cosθ=12,35
θ=π3,cos1(35)
θ={π3,π+cos135}

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Piecewise Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon