Here D=∣∣
∣∣5−6474−3216∣∣
∣∣
Apply C1−2C1,C3−6C2
∴D=∣∣
∣∣17−640−14−27010∣∣
∣∣=−∣∣∣1740−1−27∣∣∣=−[−459+40]=419≠0
Since D≠0, therefore the equations are consistent.
D1=∣∣
∣∣15−64194−34616∣∣
∣∣=15(27)−19(−40)+46(2)=1257
Similarly, D2=1676,D3=2514
∴ x1257=y1676=z2514=1419=∴x=3,y=4,z=6