Solution:-
5x−y−z=−2.....(i)
3x+y−2z=−5.....(ii)
x−y+3z=14.....(iii)
Adding eqn(i)&(ii), we have
(5x−y−z)+(3x+y−2z)=(−2)+(−5)
8x−3z=−7.....(iv)
Again, adding eqn(ii)&(iii), we have
(3x+y−2z)+(x−y+3z)=(−5)+14
4x+z=9.....(v)
Multiplying eqn(v) by 3, we get
12x+3z=27.....(vi)
Adding eqn(iv)&(vi), we have
(8x−3z)+(12x+3z)=(−7)+27
20x=20
x=1
Substituting the value of x in eqn(v), we have
4×1+z=9
⇒z=9−4
⇒z=5
Substituting the value of x and z in eqn(i), we have
5×1−y−5=−2
⇒5−y−5=−2
⇒y=2
Hence, for the given pair of lines, x=1,y=2,z=5.