Consider the given equation,
6x3−11x2+6x−1=0
Put,x=1 we get
6.13−11.12+6.1−1=0
0=0
Hence, x=1 ⇒x−1=0 is zeroes os given equation.
Now
x−16x2−5x+1¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯)6x3−11x2+6x−1
−(6x3−6x2)––––––––––––––––
−5x2+6x−1
−(−5x2+5x)–––––––––––––––––
x−1
−(x−1)––––––––––
0
Now,
6x2−5x+1=0
6x2−3x−2x+1=0
3x(2x−1)−(2x−1)=0
(2x−1)(3x−1)=0
6x3−11x2+6x−1=(2x−1)(3x−1)(x−1)=0
Hence, x=1,12,13 in H.P.
Hence, this is the answer.