p(x)=6x4−25x3+12x2+25x+6=0
Take LHS of above equation & put x=2
6(2)4−25(2)3+12(2)2+25(2)+6
6×16−25×8+12×4+75+6
96−200+48+56
=−200+200=0
⇒(x−2) is a factor of p(x)
Now put x=3 in p(x)
6(3)4−25(3)3+12(3)2+25(3)+6
6×81−25×27+12×9+25×3+6
486−675+108+75+6
=−675+675=0
⇒(x−3) is a factor of p(x)
Now (x−3)(x−2)=x2−5x+6 is a factor of p(x)
x2−5x+6)6x4−25x3+12x2+25x+16(6x2+5x+1
6x4−30x3+36x2
______________________
5x3−24x2+25x+6
5x3−25x2+30x
_____________________
x2−5x+6
x2−5x+6
_______________
0
_______________
6x4−25x3+12x2+25x+6=0
(x−2)(x−3)(6x2+5x+1)=0
(x−2)(x−3)(6x2+3x+2x+1)=0
(x−2)(x−3)(3x(6x+1)+(2x+1))=0
(x−2)(x−3)(3x+1)(2x+1)=0
⇒x=2,3,−1/3,−1/2.