Solve 8x32n−8x−32n=63
Given, 8x32n−8x−32n=63
⇒8x32n−18x32n=63
Put x32n=t, we get
8t−8t=63⇒8t2−8=63t
⇒8t2−63t−8=0
⇒8t2−64t+t−8=0
⇒8t(t−8)+1(t−8)=0
⇒(8t+1)(t−8)=0
⇒t=−18,8
⇒x32n=t
⇒x=t2n3
For t=−18, we have
x=(−18)2n3=((−12)3)2n3x=(−12)2n=122n
For t=8, we have
x=82n3=((2)3)2n3x=22n
So, the values of x are 122n and 22n.