wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve a+b+c=3
a2+b2+c2=6
a3+b3+c3=8
then find a4+b4+c4=?

Open in App
Solution

a+b+c=2.......(A)
a2+b2+c2=6.......(B)
a3+b3+c3=8.......(C)
Now, take whole square of equation (A)
(a+b+c)=22
a2+b2+c2+2ab+2bc+2bc+2ca=4
2(ab+bc+ca)=4(a2+b2+c2)
2()=46.....from (B)
2(ab+bc+ca)2
(ab+bc+ca)=1........(1)
Now,
(a+b+c)(a2+b2+c2)=a3+b3+c3+a2b+b2a+b2c+c2b+c2a+a2c
and
(a+b+c)(ab+bc+ca)=a2b+b2a+b2c+c2a+c2a+ac+3abc
(a2b+b2a+b2c+c2b+c2a+a2a+a2c)=(a+b+c)(ab+bc+ca)3abc
(a+b+c)(a2+b2+c2)=a3+b3+c3=(a+b+c)(ab+bc+ca)3abc
a3+b3+c33abc=(a+b+c)[(a2+b2+c2)(ab+bc+ca)]
Substitute values from equation A,B,C and 1.
83abc=2[(6)(1)]
83abc=2(7)
3abc=148
3abc=6
abc=2........(3)
Squaring equation (2)
(a2+b2+c2)=62
(a4+b4+c4)+2(a2b2+b2c2+c2a2)=36
a4+b4+c4=36.2(a2b2+b2c2+c2a2).......(4)
And
(ab+bc+ca)2=a2b2+b2c2+c2a2+2(a2bc+ab2c+abc2),so
a2b2+b2c2+c2a2=(ab+bc+ca)22abc(a+b+c)
Substitute values from A, 1 & 3
a2b2+b2c2+c2a2=(1)22(2)(2)
a2b2+b2c2+c2a2=1+8
a2b2+b2c2+c2a2=9
Substitute the above value in equation (4)
a4+b4+c4=362(9)
a4+b4+c2=18

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebraic Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon