a+b+c=2.......(A)
a2+b2+c2=6.......(B)
a3+b3+c3=8.......(C)
Now, take whole square of equation (A)
(a+b+c)=22
⇒a2+b2+c2+2ab+2bc+2bc+2ca=4
⇒2(ab+bc+ca)=4−(a2+b2+c2)
⇒2()=4−6.....from (B)
⇒2(ab+bc+ca)−2
(ab+bc+ca)=−1........(1)
Now,
(a+b+c)(a2+b2+c2)=a3+b3+c3+a2b+b2a+b2c+c2b+c2a+a2c
and
(a+b+c)(ab+bc+ca)=a2b+b2a+b2c+c2a+c2a+ac+3abc
⇒(a2b+b2a+b2c+c2b+c2a+a2a+a2c)=(a+b+c)(ab+bc+ca)−3abc
⇒(a+b+c)(a2+b2+c2)=a3+b3+c3=(a+b+c)(ab+bc+ca)−3abc
a3+b3+c3−3abc=(a+b+c)[(a2+b2+c2)−(ab+bc+ca)]
Substitute values from equation A,B,C and 1.
⇒8−3abc=2[(6)−(−1)]
⇒8−3abc=2(7)
⇒−3abc=14−8
⇒−3abc=6
⇒abc=−2........(3)
Squaring equation (2)
(a2+b2+c2)=62
⇒(a4+b4+c4)+2(a2b2+b2c2+c2a2)=36
⇒a4+b4+c4=36.2(a2b2+b2c2+c2a2).......(4)
And
(ab+bc+ca)2=a2b2+b2c2+c2a2+2(a2bc+ab2c+abc2),so
⇒a2b2+b2c2+c2a2=(ab+bc+ca)2−2abc(a+b+c)
Substitute values from A, 1 & 3
⇒a2b2+b2c2+c2a2=(−1)2−2(−2)(2)
⇒a2b2+b2c2+c2a2=1+8
⇒a2b2+b2c2+c2a2=9
Substitute the above value in equation (4)
⇒a4+b4+c4=36−2(9)
a4+b4+c2=18