(x2+1x2)−3(x−1x)−2=0 ..... (i)
Now, x2+1x2=(x−1x)2+2
Let (x−1x)=t
⇒t2+2−3t−2=0 ....... From (i)
⇒t(t−3)=0
⇒t=0 or t=3
Now,
t=0⇒x=1x⇒x=±1
&
t=3⇒(x−1x)=3
⇒x2−3x−1=0
⇒x=3±√132