Solve and find the value of sin36∘.
We know sin18∘=5-14,cos18∘=10+254
Step 1: Finding the value of cos36∘
Here we are going to use the formula cos2θ=1-2sin2θ
cos36∘=cos2(18∘)=1-2sin2(18∘)=1-25-142=1-25+1-25168=1-6-258=8-6-258=8-6+258=2+258=2(1+5)8=1+54∴cos36∘=1+54
Step 2: Finding the value of sin36∘
Here we will be using the formula sin2θ=1-cos2θ
⇒sin236∘=1-cos236∘=1-5+142=1-5+1+2516=16-(6+25)16=10-2516∴sin236=10-2516⇒sin36=10-2516∴sin36∘=10-254
Therefore, sin36∘=10-254.
(1) If A = 2πr2, then solve for ‘r’ and find the value of ‘r’ when A = 77 and
(2) If V = πr2h, then solve for ‘r’ and find the value of ‘r’ when V = 176 and h = 14
(3) If r2 = l2 + d2, then solve for ‘d’ and find the value of ‘d’ when r = 5 and l = 4.
(4) If c2 = a2 + b2, then solve for ‘b’. If a = 8 and c = 17, find the value of ‘b’.
(5) If K = ½ mv2, then solve for ‘v’ and find the value of ‘v’ when K = 100 and m = 2.
(6) If v2 = u2 + 2as, solve for ‘v’. If u = 0, a = 2 and s = 100, find the value of v.