The given system of equations may be written asax+by−(a−b)=0bx−ay−(a+b)=0
By cross-multiplication, we get
⇒xb×−(a+b)−(−a)×−(a−b)=−ya×−(a+b)−b×−(a−b)=1−a2−b2
⇒x−b(a+b−a(a−b)=−y−a(a+b)+b(a−b)=1−(a2+b2)
⇒xb2−a2=−y−a2−b2=1−(a2+b2)
⇒x−(a2+b2)=ya2+b2=1−(a2+b2)
⇒x=−(a2+b2)−(a2+b2)=1 and y=(a2+b2)−(a2+b2)=−1
Hence, the solution of the given system of equations is x=1,y=−1.