According to the question,
we have, ax+by=c,bx+ay=1+c
suppose......
ax+by=c, -----------(1)
bx+ay=1+c------------(2)
(for finding the y co-ordinate),
multiply by b into equation-------------(1)
abx+b2y=bc------A
multiply by a into equation------------(2)
abx+a2y=a+ac-------B
then,subtracting into equ A &B,abx+b2y=bcabx−+−a2y=a−+a−c––––––––––––––––––––––––––––y(b2−a2)=bc−a−acy=c(b2−a2)−ab2−a2
And, (for finding the x co-ordinate),
multiply by a into equation-------------(1)
a2x+aby=ac------------A
multiply by b into equation-------------(2)
b2x+aby=b+bc-------------B
then, subtracting into equ A & B,
a2x+aby=acb2x−+−aby=b−+b−c–––––––––––––––––––––––––––x(a2−b2)=ac−b−bcx=c(a−b)−ba2−b2
So, we have x and y value.