1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Determinant
Solve: 1+si...
Question
Solve:
∣
∣ ∣ ∣
∣
1
+
sin
2
θ
cos
2
θ
4
sin
4
θ
sin
2
θ
1
+
cos
2
θ
4
sin
4
θ
sin
2
θ
cos
2
θ
1
+
4
sin
4
θ
∣
∣ ∣ ∣
∣
=
0
; where,
0
<
θ
<
π
2
.
Open in App
Solution
Given
∣
∣ ∣ ∣
∣
1
+
sin
2
θ
cos
2
θ
4
sin
4
θ
sin
2
θ
1
+
cos
2
θ
4
sin
4
θ
sin
2
θ
cos
2
θ
1
+
4
sin
4
θ
∣
∣ ∣ ∣
∣
=
0
; where,
0
<
θ
<
π
2
.
(
C
1
→
C
1
+
C
2
)
⇒
∣
∣ ∣ ∣
∣
2
cos
2
θ
4
sin
4
θ
2
1
+
cos
2
θ
4
sin
4
θ
1
cos
2
θ
1
+
4
sin
4
θ
∣
∣ ∣ ∣
∣
=
0
(
R
2
→
R
2
−
R
1
&
R
3
→
R
3
−
R
1
)
⇒
∣
∣ ∣
∣
2
cos
2
θ
4
sin
4
θ
0
1
0
−
1
0
1
∣
∣ ∣
∣
=
0
⇒
2
+
4
sin
4
θ
=
0
⇒
sin
4
θ
=
−
1
2
⇒
4
θ
=
7
π
6
...[Since
0
<
θ
<
π
2
]
⇒
θ
=
7
π
24
Suggest Corrections
0
Similar questions
Q.
If
∣
∣ ∣ ∣
∣
1
+
s
i
n
2
θ
c
o
s
2
θ
4
s
i
n
4
θ
s
i
n
2
θ
1
+
c
o
s
2
θ
4
s
i
n
4
θ
s
i
n
2
θ
c
o
s
2
θ
1
+
4
s
i
n
4
θ
∣
∣ ∣ ∣
∣
=
0
such that
0
≤
θ
≤
π
2
then
θ
is