wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Ifi=-1. If -1+i321(1i)24+1+i321(1+i)24=k, and n=|k| be the greatest integral part of |k|. Then

sumj=0n+5(j+5)2sumj=0n+5(j+5) equals to__


Open in App
Solution

Explanation for the correct option:

Finding the value of sumj=0n+5(j+5)2sumj=0n+5(j+5)

We know the polar form of z=x+iy

rcosθ+isinθ=reiθandθ=tan-1yx where, r=x2+y2

Since

r=12+32=1+3=4=2

and

θ=tan-1-3=2π3

Then,

-1+i3=2ei2π3......(1)

Similarly,

1-i=2e-iπ4......(2)

And

1+i=2eiπ4......(3)

Now consider the given Equation as,

-1+i321(1i)24+1+i321(1+i)24=k

Substitute the value of Equation (1), (2) and (3) in the above Equation becomes,

k=2ei2π3212e-iπ424+2eiπ3212eiπ424k=221ei2π3×21224e-iπ4×24+221eiπ3×21224eiπ4×24k=221ei2π×7212×24e-i6π+221ei2π×7212×24ei6πk=221e14πi212e-6πi+221e7πi212e6πik=221-12e14πi+6πi+221-12e7πi-6πik=29e20πi+29eπik=291+29-1k=29-29k=0

Since n=|k|

Therefore n=0

So now,

j=05(j+5)2j=05(j+5)=52+62+72+82+92+102[5+6+7+8+9+10]=[(12+22++102)(12+22+32+42)][(1+2+3++10)(1+2+3+4)]=(38530)-[5510]=35545=310

Therefore, sumj=0n+5(j+5)2sumj=0n+5(j+5)=310


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Continuous Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon