Given (x/a) - (y/b) = a - b
Multiply by (1/a) both sides, we get
(x/a2) - (y/ab) = 1 - (b/a) → (1)
Given other linear equation as (x/a2) - (y/b2) = 0 → (2)
Subtract (2) from (1), we get
(x/a2) - (y/ab) = 1 -(b/a)
(x/a2) - (y/b2) = 0
----------------------------------
-(y/ab) + (y/b2) = 1 - (b/a)
⇒ y[(-b + a)/ab2] = ( a - b)/a
∴ y = b2
Put y = b2 in (x/a2) - (y/b2) = 0
⇒ (x/a2) - (b2/b2) = 0
⇒ (x/a2) - 1 = 0
⇒ (x/a2) = 1
∴ x = a2
x = a2
and y = b2