1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Solving Simultaneous Linear Equation Using Cramer's Rule
Solve by Cram...
Question
Solve by Cramer's Rule:
x
+
y
+
z
=
2
,
x
+
2
y
+
z
=
1
and
3
x
+
y
−
5
z
=
4
A
x
=
5
2
,
y
=
−
1
,
z
=
1
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
x
=
1
2
,
y
=
−
1
,
z
=
5
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x
=
5
2
,
y
=
3
2
,
z
=
1
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x
=
1
2
,
y
=
3
2
,
z
=
5
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
A
x
=
5
2
,
y
=
−
1
,
z
=
1
2
Given equations are,
x
+
y
+
z
=
2
x
+
2
y
+
z
=
1
3
x
+
y
−
5
z
=
4
Coefficient matrix
=
⎡
⎢
⎣
1
1
1
1
2
1
3
1
−
5
⎤
⎥
⎦
△
=
∣
∣ ∣
∣
1
1
1
1
2
1
3
1
−
5
∣
∣ ∣
∣
=
1
(
−
10
−
1
)
−
1
(
−
5
−
3
)
+
1
(
1
−
6
)
=
−
11
+
8
−
5
=
−
8
△
1
=
∣
∣ ∣
∣
2
1
1
1
2
1
4
1
−
5
∣
∣ ∣
∣
=
2
(
−
10
−
1
)
−
1
(
−
5
−
4
)
+
1
(
1
−
8
)
=
−
22
+
9
−
7
=
−
20
△
2
=
∣
∣ ∣
∣
1
2
1
1
1
1
3
4
−
5
∣
∣ ∣
∣
=
1
(
−
5
−
4
)
−
2
(
−
5
−
3
)
+
1
(
4
−
3
)
=
−
9
+
16
+
1
=
8
△
3
=
∣
∣ ∣
∣
1
1
2
1
2
1
3
1
4
∣
∣ ∣
∣
=
1
(
8
−
1
)
−
1
(
4
−
3
)
+
2
(
1
−
6
)
=
7
−
1
−
10
=
−
4
x
=
△
1
△
=
−
20
−
8
=
5
2
y
=
△
2
△
=
8
−
8
=
−
1
z
=
△
3
△
=
−
4
−
8
=
1
2
∴
x
=
5
2
,
y
=
−
1
and
z
=
1
2
Hence solved.
Suggest Corrections
0
Similar questions
Q.
Solve by Crammer rule the equation
1
x
+
2
y
+
1
z
=
2
,
3
x
−
4
y
−
2
z
=
1
,
2
x
+
5
y
−
2
z
=
3
Q.
Solve the following system of equations by matrix method:
(i)
x
+
y
−
z
= 3
2
x
+ 3
y
+
z
= 10
3
x
−
y
− 7
z
= 1
(ii)
x
+
y
+
z
= 3
2
x
−
y
+
z
= − 1
2
x
+
y
− 3
z
= − 9
(iii) 6
x
− 12
y
+ 25
z
= 4
4
x
+ 15
y
− 20
z
= 3
2
x
+ 18
y
+ 15
z
= 10
(iv) 3
x
+ 4
y
+ 7
z
= 14
2
x
−
y
+ 3
z
= 4
x
+ 2
y
− 3
z
= 0
(v)
2
x
-
3
y
+
3
z
=
10
1
x
+
1
y
+
1
z
=
10
3
x
-
1
y
+
2
z
=
13
(vi) 5
x
+ 3
y
+
z
= 16
2
x
+
y
+ 3
z
= 19
x
+ 2
y
+ 4
z
= 25
(vii) 3
x
+ 4
y
+ 2
z
= 8
2
y
− 3
z
= 3
x
− 2
y
+ 6
z
= −2
(viii) 2
x
+
y
+
z
= 2
x
+ 3
y
−
z
= 5
3
x
+
y
− 2
z
= 6
(ix) 2
x
+ 6
y
= 2
3
x
−
z
= −8
2
x
−
y
+
z
= −3
(x)
x
−
y
+
z
= 2
2
x
−
y
= 0
2
y
−
z
= 1
(xi) 8
x
+ 4
y
+ 3
z
= 18
2
x
+
y
+
z
= 5
x
+ 2
y
+
z
= 5
(xii)
x
+
y
+
z
= 6
x
+ 2
z
= 7
3
x
+
y
+
z
= 12
(xiii)
2
x
+
3
y
+
10
z
=
4
,
4
x
-
6
y
+
5
z
=
1
,
6
x
+
9
y
-
20
z
=
2
;
x
,
y
,
z
≠
0
(xiv)
x
−
y
+ 2
z
= 7
3
x
+ 4
y
− 5
z
= −5
2
x
−
y
+ 3
z
= 12
Q.
On which of the following lines lies the point of intersection of the line,
x
−
4
2
=
y
−
5
2
=
z
−
3
1
and the plane,
x
+
y
+
z
=
2
?
Q.
Solve equations by Cramer's rule
x
+
y
+
z
=
2
,
x
−
2
y
+
z
=
3
,
2
x
−
y
−
3
z
=
−
1
Q.
Find the angle between the following pair of lines:
(i)
x
−
2
2
=
y
−
1
5
=
z
+
3
−
3
and
x
+
2
−
1
=
y
−
4
8
=
z
−
5
4
(ii)
x
2
=
y
2
=
z
1
and
x
−
5
4
=
y
−
2
1
=
z
−
3
8
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Cramer's Rule
MATHEMATICS
Watch in App
Explore more
Solving Simultaneous Linear Equation Using Cramer's Rule
Standard X Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app