Solve by cross multiplication method:
4x−5y=−7
4x−y=5
Given equation are
4x−5y+7=0
4x−y−5=0
Comparing that equation
a1x+b1y+c1=0
a2x+b2y+c2=0
Then,
a1=4,b1=−5,c1=7
a2=4,b2=−1,c2=−5
By cross multiplication method,
xb1c2−b2c1=yc1a2−c2a1=1a1b2−a2b1
x(−5)(−5)−(−1)(7)=y(7)(4)−(−5)(4)=1(4)(−1)−(4)(−5)
x25+7=y28+20=1−4+20
x32=y48=116
x=3216 and y=4816=3
x=2 and y=3