The correct option is B x=(a+b) and y=(a−b)
Writing the equations in the standard form, we get.
(a−b)x+(a+b)y=2(a2−b2),
(a+b)x−(a−b)y=4ab
Applying the cross-multiplication method, we get
−4ab(a+b)−2(a−b)(a2−b2)
=−2(a+b)[2ab+(a−b)2]
=−2(a+b)(2ab+a2+b2−2ab)
=−2(a+b)(a2+b2)
Simplification of the expression under y :
−2(a2−b2)(a+b)+4ab(a−b)
=−2(a−b)[(a+b)(a+b)−2ab]
=−2(a−b)(a2+b2+2ab−2ab)
=−2(a−b)(a2+b2)
Simplification of the expression under 1 :
−(a−b)2−(a+b)2
=−(a2+b2−2ab)−(a2+b2+2ab)
=−2(a2+b2)
Hence,
x−2(a+b)(a2+b2)=y−2(a−b)(a2+b2)=1−2(a2+b2)
⇒xa+b=ya−b=11
⇒x=(a+b) and y=(a−b)