1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Inverse of a Matrix
Solve by matr...
Question
Solve by matrix method
x
+
2
y
+
3
z
=
2
,
2
x
+
3
y
+
z
=
−
1
,
x
−
y
−
z
=
−
2
Open in App
Solution
The given equations is of the form
A
X
=
B
⇒
⎡
⎢
⎣
1
2
3
2
3
1
1
−
1
−
1
⎤
⎥
⎦
⎡
⎢
⎣
x
y
z
⎤
⎥
⎦
=
⎡
⎢
⎣
2
−
1
−
2
⎤
⎥
⎦
⇒
|
A
|
=
⎡
⎢
⎣
1
2
3
2
3
1
1
−
1
−
1
⎤
⎥
⎦
=
1
[
3
1
−
1
−
1
]
−
2
[
2
1
1
−
1
]
+
[
2
3
1
−
1
]
=
1
(
−
3
+
1
)
−
2
(
−
2
−
1
)
+
3
(
−
2
−
3
)
=
1
(
−
2
)
−
2
(
−
3
)
+
3
(
−
5
)
=
−
2
+
6
−
15
=
−
11
≠
0
suits singular inverse exists :
Ad joint of A
⇒
A
11
=
(
−
1
)
1
+
1
[
3
1
−
1
−
1
]
=
(
−
1
)
(
−
3
+
1
)
=
(
−
1
)
(
−
2
)
=
2
⇒
A
12
=
(
−
1
)
1
+
2
[
2
1
1
−
1
]
=
(
−
1
)
(
−
2
−
1
)
=
−
3
⇒
A
13
=
(
−
1
)
1
+
3
[
2
3
1
−
1
]
=
(
−
1
)
4
(
−
2
+
3
)
=
(
−
1
)
(
−
5
)
=
−
5
⇒
A
21
=
(
−
1
)
2
+
1
[
2
3
−
1
−
1
]
=
(
−
1
)
3
(
−
2
+
3
)
=
1
⇒
A
22
=
(
−
1
)
2
+
2
[
1
3
1
−
1
]
=
(
−
1
)
4
(
−
1
−
3
)
=
−
4
⇒
A
23
=
(
−
1
)
2
+
3
[
1
2
1
−
1
]
=
(
−
1
−
2
)
=
−
3
⇒
A
31
=
(
−
1
)
3
+
1
[
2
3
3
1
]
=
(
2
−
9
)
=
−
7
⇒
A
32
=
(
−
1
)
3
+
2
[
1
3
2
1
]
=
(
1
−
6
)
=
−
5
⇒
A
33
=
(
−
1
)
3
+
3
[
1
2
2
3
]
=
(
−
3
−
4
)
=
−
1
Here the ad joint of A is
⎡
⎢
⎣
A
11
A
21
A
31
A
12
A
22
A
32
A
13
A
23
A
33
⎤
⎥
⎦
=
⎡
⎢
⎣
2
1
−
7
−
3
4
−
5
−
5
−
3
−
1
⎤
⎥
⎦
⇒
A
−
1
=
−
1
11
⎡
⎢
⎣
2
1
−
7
−
3
4
−
5
−
5
−
3
−
1
⎤
⎥
⎦
⇒
A
−
1
B
=
X
X
=
A
−
1
B
⇒
⎡
⎢
⎣
x
y
z
⎤
⎥
⎦
=
−
1
11
⎡
⎢
⎣
2
1
−
7
−
3
4
−
5
−
5
−
3
−
1
⎤
⎥
⎦
⎡
⎢
⎣
2
−
1
−
2
⎤
⎥
⎦
=
−
1
11
⎡
⎢
⎣
4
−
1
+
14
−
6
−
4
+
10
−
10
+
3
+
2
⎤
⎥
⎦
=
−
1
11
⎡
⎢
⎣
17
0
−
5
⎤
⎥
⎦
=
⎡
⎢
⎣
−
17
/
11
0
5
/
11
⎤
⎥
⎦
⇒
x
=
−
17
11
y
=
0
z
=
5
11
Hence, solved.
Suggest Corrections
0
Similar questions
Q.
Solve by matrix method:
(
x
+
3
y
+
z
=
5
)
,
(
2
x
−
y
+
3
z
=
4
)
,
(
x
−
2
y
+
5
z
=
4
)
.
Q.
Solve the following equations by matrix method.
2
x
+
y
+
z
=
1
,
x
−
2
y
−
3
z
=
1
,
3
x
+
2
y
+
4
z
=
5
Q.
Solve the following system of equations, using matrix method;
x
+
2
y
+
z
=
7
,
x
+
3
z
=
11
,
2
x
−
3
y
=
1
.Find
x
+
y
+
z
Q.
Solve the system of equations, using matrix method
2
x
+
3
y
+
3
z
=
5
,
x
−
2
y
+
z
=
−
4
,
3
x
−
y
−
2
z
=
3
Q.
Solve the following system of equations by consistency- in consistency method
x
+
y
+
z
=
6
,
x
−
y
+
z
=
2
,
2
x
−
y
+
3
z
=
9
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Adjoint and Inverse of a Matrix
MATHEMATICS
Watch in App
Explore more
Inverse of a Matrix
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app