wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve 1+sinAcosA1+sinA+cosA=tanA2

Open in App
Solution

1+sinAcosA1+sinA+cosA

We can write

cosA=2cos2A21 cosA+1=2cos2A2

cosA=12sin2A2 1cosA=2sin2A2

sinA=2sinA2cosA2

Substituting these values in the given expression we get,

1+sinAcosA1+sinA+cosA=(1cosA)+sinA(1+cosA)+sinA


1+sinAcosA1+sinA+cosA=2sin2A2+2sinA2cosA22cos2A2+2sinA2cosA2

1+sinAcosA1+sinA+cosA=2sinA2(sinA2+cosA2)2cosA2(sinA2+sinA2)

1+sinAcosA1+sinA+cosA=tanA2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon