dydx+√(x2−1)(y2−1)xy=0
dydx+√(x2−1)x√y2−1y=0
dydx=−√(x2−1)√(y2−1)xy
⇒y√y2−1dy=−√x2−1xdx
∫y√y2−1dy=−∫√1−1x2dx
Let y2−1=t
⇒2ydy=dt ydy=dt/2
and ∫√x2−a2xdx=√x2−a2−asec−1∣∣∣|x||a|∣∣∣+c
So: ∫1t1/2dt2=−√x2−1+1⋅sec−1|x|+c
=12×(23)t12=−√x2−1+sec−1|x|+c
=√y2−1=−√x2−1+sec−1|x|+c
⇒√y2−1+√x2−1=sec−1|x|+c.