cos120.cos240.cos360.cos480.cos600.cos720.cos960=?
From trigonometry we have a following identity,
cosθ.cos(600−θ).cos(600+θ)=14cos3θ
So, if θ=120
cos120.cos(600−120).cos(600+120)=14cos(3×12)
⇒cos120.cos480.cos720=14cos360
⇒cos120.cos480.cos720=√5+116⟶(1)
if θ=240
cos240.cos(600−240)cos(600+240)=14cos(3×240)
⇒cos240.cos360.cos840=14cos720
⇒cos240.cos360.cos840=√5−116⟶(2)
Multiplying (1) & (2) we get
cos120.cos240.cos360.cos480.cos720.cos840=(√5+116)(√5−116)⟶(3)
We are asked to find the value of :
cos120.cos240.cos360.cos480.cos600.cos720.cos960
=cos120.cos240.cos360.cos480.cos720.cos(1800−840).cos600
=cos120.cos240.cos360.cos480.cos720.(−cos840).cos600
=(√5+1)(1−√5)16×16×12 (from (3) & cos600=1/2)
=1−532×16
=−432×16
=−1128