The correct option is
D 3/4cos23π5+cos24π5
=cos2(π−2π5)+cos2(π−π5)
=cos22π5+cos2π5
=1−sin22π5+cos2π5
=1+cos2π5−sin22π5
We know that cos2A−cos2B=cos(A+B)cos(A−B)
=1+cos(3π5)cos(π5)
=1+cos108∘cos36∘
=1+cos(90∘+18∘)cos36∘
=1−sin18∘cos36∘
=1−√5−14×√5+14
=1−5−116
=1−416
=1−14=4−14=34