wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve cos2xdydx+y=tanx(0x<π2)

Open in App
Solution

We have,

cos2xdydx+y=tanx

dydx+sec2x(y)=sec2xtanx

We know that the general equation

dydx+Py=Q

Here,

P=sec2x,Q=sec2xtanx

Since, integrating factor

I.F=ePdx

I.F=esec2xdx

I.F=etanx

We know that the general solution,

y×I.F=(Q×I.F)dx+C

Therefore,

y×etanx=(sec2xtanx)etanxdx+C

Let t=tanx

dt=sec2xdx

Therefore,

y×et=tetdt+C

y×et=tet1etdt+C

y×et=tetet+C

On putting the value of t, we get

y×etanx=tanxetanxetanx+C

Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon