cos2x−sinx−14=0
Replacing cos2x by 1−sin2x we get a quadratic in sine as
4sin2x+4sinx−3=0
⇒4sin2x+6sinx−2sinx−3=0
⇒2sinx(2sinx+3)−1(2sinx+3)=0
⇒(2sinx+3)(2sinx−1)=0
⇒sinx≠−32 ince −1≤sinx≤1
If sinx=12⇒Principal solution is x=π6
General solution is x=nπ+(−1)nπ6,n∈I