cos3x+cos2x=sin(3x/2)+sin(x/2)
∴2cos5x2cosx2−2sinxcosx2=0
∴2cos(x/2)[cos(5x/2)−sinx]=0
cos(x2)=0 ∴x2=(n+12)π
or x=2nπ+π,
n=0, x=π as 0≤x≤2π
cos5x2=sinx=cos(π2−x)
5x2=2nπ±(π2−x)
Taking +ive sign (5x/2)+x=2nπ+π/2,
(7x/2)=(4n+1)(π/2)
∴x=(4n+1)π/7
n=0,x=π/7,n=1,x=5π/7,n=2,x=9π/7,
n=3,x=13π/7
Now taking −ive sign,
(5x/2)−x=2nπ−π/2
or (3x/2)=(4n−1)π/2
∴x=(4n−1)π/3,
∴ For n=1, x=π.
∴x=π7,5π7,π,9π7,13π7.