wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:
cos6θ+cos4θ+cos2θ+1=0,0θπ

Open in App
Solution

cos6θ+cos4θ+cos2θ+1=0
Apply cosC+cosD=2cos(C+D2)cos(CD2)
On cos4θ & cos2θ
cos6θ+2cos3θcosθ+1=0
2cos23θ1+2cos3θcosθ=1 [cos2x=2cos2x1]
2cos23θ+2cos3θcosθ=0
cos3θ(cos3θcosθ)=0
cos3θ=0 in 0θπ
θ=π6,π2[3θ=π2,3π2]
cosθ+cos3θ=0
4cos3θ3cosθ+cosθ=0
4cos3θ2cosθ=0
cosθ(2cos2θ1)=0
θ=π2,π4,3π4

θ=π6π2,π4,3π4(union)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon