wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:
cos6θsin6θ=14(cos32θ+3cos2θ)

Open in App
Solution

R.H.S.

14(cos32θ+3cos2θ)

=14cos2θ(cos22θ+3)

=14cos2θ(1sin22θ+3)

=14cos2θ(4sin22θ)

=14cos2θ(4(4sin2θcos2θ))

=14cos2θ×4(1sin2θcos2θ)

=cos2θ(1sin2θcos2θ)

=cos2θ[(sin2θ+cos2θ)2sin2θcos2θ]

=cos2θ[sin4θ+cos4θ+2sin2θcos2θsin2θcos2θ]

=cos2θ[sin4θ+cos4θ+sin2θcos2θ]

=(cos2θsin2θ)[(sin2θ)2+(cos2θ)2+sin2θcos2θ]

=(cos3θ)2(sin3θ)2

=cos6θsin6θ

L.H.S.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon