wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve (cosθ42sinθ)sinθ+(1+sinθ42cosθ)cosθ=0

Open in App
Solution

(cosθ42sinθ)sinθ+(1+sinθ42cosθ)cosθ=0
sinθcosθ42sin2θ+cosθ+sinθ4cosθ2cos2θ=0
sinθθ4+sinθ4cosθ+cosθ2(sin2θ+cos2θ)=0
sinacosb+cosasinb
sin(θ+θ4)+cosθ2=0 [sin2θ+cos2θ=1]
sin5θ4+cosθ=2
For this to happen as we know sin5θ41<cosθ1
Thus sin5θ4+cosθ2. Therefore equality exists
Thus sin5θ4=1 & cosθ=1
5θ4=(4n1+1)π2n1Z θ=2n2π n2Z
θ=(4n1+1)2π5 n1Z .....(1) θ=2n2π...(2) n2Z
Taking intersection of (1) & (2)
θ=(4n+10)2π nZ
θ={2π,10π,18π,.....}

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon