Solve:
cotA-12-sec2A=cotA1+tanA
Proof of trigonometric identities:
LHS:
cotA-12-sec2A=1tanA-12-1+tan2A (∵sec2A=1+tan2A)
1tanA-12-1+tan2A=1-tanAtanA(1-tan2A) [∵1-tan2A=1-tanA1+tanA]
1-tanAtanA1-tanA1+tanA=1tanA1+tanA=cotA1+tanA
LHS=RHS
Hence, it is proved that cotA-12-sec2A=cotA1+tanA.
prove the 90 degree is aright angle