Given: 14⋅∫(1+cos(2x)2)2dx
Simplify the integral.
14⋅∫(1+cos(2x)2)2dx
=14⋅∫cos4(x)dx
=14⋅∫cos3(x)cos(x)dx
Apply integration by parts,
u=cos3(x),v′=cos(x)
=14⋅(cos3(x)sin(x)−∫−3cos2(x)sin2(x)dx)
=14⋅(cos3(x)sin(x)−(−38(x−14sin(4x))))
=14⋅(cos3(x)sin(x)+38(x−14sin(4x)))
=14⋅(cos3(x)sin(x)+38(x−14sin(4x)))
=14(cos3(x)sin(x)+38(x−14sin(4x)))+C