The correct option is
A 12sinxsin3x+tanx)tan3x
=2sinx3sinx−4sin3x+tanx3tanx−tan3x1−3tan2x
=2sinxsinx(3−4sin2x)+tanx(1−3tan2x)tanx(3−tan2x)
=23−4sin2x+1−3sin2xcos2x3−sin2xcos2x
=23−4sin2x+cos2x−3sin2x3cos2x−sin2x
=23−4sin2x+1−sin2x−3sin2x3−3sin2x−sin2x
=23−4sin2x+1−4sin2x3−4sin2x
=2+1−4sin2x3−4sin2x
=3−4sin2x3−4sin2x=1