Solve cotθcotθ−cot3θ+tanθtanθ−tan3θ
We have
cotθcotθ−cot3θ+tanθtanθ−tan3θ
=cosθsinθcosθsinθ−cos3θsin3θ+sinθcosθsinθcosθ−sin3θcos3θ
=cosθsinθcosθsin3θ−cos3θsinθsinθsin3θ+sinθcosθsinθcos3θ−sin3θcosθcosθcos3θ
=cosθsin3θcosθsin3θ−cos3θsinθ+sinθcos3θsinθcos3θ−sin3θcosθ
=cosθsin3θcosθsin3θ−cos3θsinθ−sinθcos3θsin3θcosθ−sinθcos3θ
=cosθsin3θ−sinθcos3θcosθsin3θ−cos3θsinθ
=1
Hence, the value is 1.