d2ydx2+dydx+ex=0⇒d2ydx2+dydx=−ex
Auxillary equation m2+m=0
m(m+1)=0
m=0,m=−1
yh(x)=C1e0x+C2e−x⇒yh(x)=C1+C2e−x
yp(x)=Aex
yp′(x)=Aex
Putting the value of yp andYp′ in the differential equation we get
Aex+Aex=−ex
2Aex=−ex⇒2A=−1⇒A=−12
∴yp(x)=−12ex
∴y(x)=yh(x)+yp(x)
y(x)=C1+C2e−x+(−12)ex