wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve: dydx+2ytanx=sinx, given that y=0, when x=π3. Show that maximum value of y is 18.

Open in App
Solution

dydx=2ytanx=sinx
The given differential equation is of the form
dydx+Py=Q
Comparing the two equations,
P=2ytanx & Q=sinx
Now, we will find the integrating factor
If=ePdx=e2tanxdx=e2tanxdx=e2[logsecx]=elog(sec2x)=sec2x
Solution to the differential equation
y(IF)=(Q×IF)dx+Cysec2x=sinxsec2xdx+Cysec2x=sinxcos2xdx+C=sinxcosx×1cosxdx+Cysec2x=tanxsecxdx+Cysec2x=secx+C y=1secx+Csec2x=cosx+(cos2x)Cwhen x=π3, y=0y=0 = cos(π3)+cos2(π3)C 12+(14)C=0 C=2 y=cosx2cos2xy2=cos2x+12cosx=(cos2x12cosx)=[(cosx14)2(14)2]y2=[(cosx14)2(14)2]=(cosx14)2+116
(cosx14)2 will always be positive & therefore (cosx14)20
Hence y2 will be max. value of (14)2=116
So the max. value of y=116×2=18

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon